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Abstract—Biologically inspired spiking networks are an im-
portant tool to study the nature of computation and cognition in
neural systems. In this work, we investigate the representational
capacity of spiking networks engaged in an identity mapping
task. We compare two schemes for encoding symbolic input, one
in which input is injected as a direct current and one where
input is delivered as a spatio-temporal spike pattern. We test
the ability of networks to discriminate their input as a function
of the number of distinct input symbols. We also compare
performance using either membrane potentials or filtered spike
trains as state variable. Furthermore, we investigate how the
circuit behavior depends on the balance between excitation
and inhibition, and the degree of synchrony and regularity
in its internal dynamics. Finally, we compare different linear
methods of decoding population activity onto desired target
labels. Overall, our results suggest that even this simple mapping
task is strongly influenced by design choices on input encoding,
state-variables, circuit characteristics and decoding methods, and
these factors can interact in complex ways. This work highlights
the importance of constraining computational network models of
behavior by available neurobiological evidence.

Index Terms—stimulus encoding, reservoir computing, bal-
anced random networks

I. INTRODUCTION

Spiking neural networks are the computational substrate of
neurobiological systems. The properties of observed popula-
tion responses and their suitability for processing is dependent
on the complexity of the underlying neuronal biophysics,
the details of excitatory and inhibitory synaptic transmission
and the recurrent interactions that they mediate. These local
features influence the responsiveness of the circuit and de-
termine how specific spatio-temporal activity patterns emerge
from the interaction between ongoing, internally generated
activity and external inputs. Input sensitivity and selectivity
determine whether the circuit state can be transferred from one
subspace to another at any point in time (real-time computing)
in response to relevant input features.

Apart from the nature of input signals, the manner in which
these are delivered to the circuit might play a critical role.
In real brains, only the peripheral systems have access to
direct external input as a mechanical or chemical signal from
the environment. These systems are endowed with highly

specialized, modality-specific adaptations, that allow them to
convert external signals into sequences of spike trains. Any
subsequent processing stage then receives, processes and trans-
mits signals as a complex spatio-temporal sequence of spike
trains. Thus, spatio-temporal spike patterns are the language of
the system, i.e., its natural inputs and outputs. In computational
studies, however, input signals are often represented as direct,
somatically injected currents. This approach simplifies the
encoding process given that the input signal has a direct impact
on the circuit dynamics. This is particularly true if there is no
recurrence in the system which then becomes a passive non-
linear encoder [7]. Recurrence is a ubiquitous design feature of
neurobiological networks (particularly cortical microcircuits),
which can lead to complex and unpredictable responses, and
its functional role is not fully understood. It complicates the
encoding process, and has made the computational analysis
of recurrent spiking networks difficult (but see, e.g. [1],
[4], [11]). Ideally, for biological compatibility, the encoding
process should be mediated by spatiotemporal spike patterns
and should drive the circuit to operate in a physiologically
plausible regime.

Additionally, the choice of state variables to characterize
the representational properties of spiking networks is also im-
portant. These states can then be linearly combined to extract
relevant information and solve a given computational task. It
is common to calibrate the readouts on an instantaneous rate
estimate, obtained by convolving each neuron’s spike trains
with an adequate kernel (typically exponential). However, as
we have argued in [13] and set out to quantify in this study,
this approach may introduce biases in that the parameters of
the filter kernel are arbitrarily chosen and may influence the
results. Using membrane potentials instead provides access to
the information contained in the circuit in a more natural and
unbiased way.

In order to probe the computational capabilities of a circuit
in relation to its intrinsic properties, it is important not to
introduce confounding factors. Thus, the decoder itself should
be memoryless and only able to access traces of past inputs
that persist in the system’s dynamics. The choice of a spike
filter kernel and its associated time constant can distort results
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as it imposes its own timescale. Training a readout directly
on neuronal state variables, such as the membrane potential,
avoids this issue.

The main goal of this study is to better understand how
different encoding strategies influence the circuit’s response
properties, interpreted in light of known physiological con-
straints, and how these strategies influence the characteristics
of the high-dimensional population dynamics in response to
multiple input stimuli.

II. METHODS

In order to focus primarily on the encoding and decoding
processes and isolate their effects from the circuit properties,
we used relatively simple, homogeneous and static neuronal
circuits, tuned to operate in a balanced state under stationary
conditions. To establish suitable benchmarks and to ensure that
variations in computational performance were solely related to
the parameters of encoding and decoding, no form of long-
term adaptation or learning was introduced in any of the
circuit’s components.

A. Task specification

We define a computational task as the problem of learning
a mapping between an input sequence u[n] ∈ {0, 1} Nu and
a target output sequence y[n] ∈ {0, 1} Ny , both viewed as
discrete Nu- or Ny-dimensional time series of binary fea-
ture vectors (orthogonal stimulus representations), with finite
length T (n = 1, ..., T ). In this study, we focus on the simplest
mapping where inputs and targets were identical, i.e. y = u.
This task measures the network’s ability to map Nu distinct
input stimuli onto linearly separable internal states and this
ability is the basis for more complex cognitive functions that
can involve sequential dependencies. In language processing,
for example, stimuli would correspond to word representations
activated by auditory or visual input. The capacity to separate
these discrete units of information in representational space is
critical in order to compute the compositional meaning of an
utterance. Hence, our approach provides a first step towards
systematically relating circuit features to a fundamental prop-
erty of cognitive systems.

B. Signal transduction and encoding

The signal transduction process (illustrated in Figure 1)
converts a discrete, binary input sequence u into a continuous
input signal that is then delivered to the circuit through some
appropriate encoding strategy. Each input stimulus is active
for a fixed duration of du = 200 ms with no added inter-
stimulus interval. Although variations in stimulus duration
and inter-stimulus intervals, as well as their amplitudes and
kinetics, can play an important role in modulating population
responses and computational performance, we did not explore
their impact in this study. Instead, we focused on the encoding
process per se by which the input signal was mapped into the
circuit. The features and parameters of input transduction were
thus fixed and chosen to maximize the information content in
the input space while avoiding the introduction of additional

variation. For simplicity, we also disregarded potential sources
of top-down information and focused on the characteristics of
stimulus representation and processing in purely input-driven
circuits.
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Fig. 1. Schematic representation of the set-up used throughout this
manuscript. (a) A symbolic, discrete time series u is converted to a continuous
signal u(t), which is used to drive the circuit C. Population activity, x(t) in
response to input u(t) recorded (see example traces in (b, c)), sampled and
used by a linear decoder to classify the identity of each stimulus, producing
the discrete output time series y. (b) - Example of direct encoding, where
Nu = 8 stimuli are injected into the circuit as a direct input current. (c) -
Example of indirect encoding, where each stimulus is converted to a unique
spatio-temporal spike pattern. Example traces of population responses (the
circuit state, x(t)) are depicted on the right-hand side.

We examined two different encoding schemes:
a) Direct encoding: the signal was scaled by ρu, which

specifies the current amplitude to be injected into the target
neurons. Each input channel was then mapped to a random
subset of neurons (determined by the structure of the input
weights W in ∈ R Nu× N

+ ). In this way, each neuron’s mem-
brane received one additional input source (see Figure 1b and
Equation 2):

I in(t) = ρuW
inu(t) (1)

b) Indirect encoding: the input signal was converted
into a set of distributed spike trains across a population of
N in input neurons. We assumed that the network receives a
large number of external input spike trains, conveyed through
excitatory synapses. Thus, we fixed the number of encoding
neurons to be equal to the number of recurrent, excitatory
neurons, i.e. N in = NE and treated all input synapses as
excitatory. The scaling parameter ρu was used to control the
average firing rate across the input population. Each stimulus
was then converted into a fixed, spatio-temporal spike pattern
across N in neurons. In other words, each stimulus was an
instance of ‘frozen noise’, composed of N in independent
Poisson processes, at a rate ρu and with a duration du ms.

For both encoding schemes, the input weight matrix W in

was sparse and random, with density p in = pαE = 0.1
(see below). To add some variability to the input mapping,
each input weight w in

ij was randomly drawn from a normal
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distribution with µ in = 1 and σ = 0.5µ in, truncated to the
interval [0.0001, 10µ in].

C. Circuit specification

Each circuit C, consisted of a random, sparse and re-
currently coupled network of N = 10000 homogeneous,
adaptive exponential integrate-and-fire neurons, sub-divided
into NE = 0.8 N excitatory and NI = 0.2 N inhibitory
populations. All input and recurrent connections, W in and
W rec, were sparse, with density p syn and random, with val-
ues drawn independently from truncated normal distributions:
w syn

ij ∼ N (µ syn, 0.5µ syn), with w syn
ij ∈ (0.0001, 10µ syn).

The same was true for recurrent connection delays (d syn):
d syn

ij ∼ N (d syn, 0.5d syn), with d syn
ij ∈ (0.1, 10d syn). Con-

nection parameters were fixed and determined according to
the nature of the presynaptic population, i.e., whether the
connection was excitatory or inhibitory (see Table I).

TABLE I
RECURRENT CONNECTIVITY PARAMETERS.

Parameter Value Description
pαE 0.1 excitatory connection probability
pαI 0.2 inhibitory connection probability
µαE 1.2 nS mean excitatory synaptic strength
µαI γµαE nS mean inhibitory synaptic strength
γ 15, 11 E/I balance parameter (direct, indirect)
dαE 1.2 ms mean excitatory connection delay
dαI 0.8 ms mean inhibitory connection delay

As a compromise between model complexity and biophysi-
cal realism, we used the adaptive exponential integrate-and-fire
(AdEx) neuron [3], a reduced, two-dimensional point neuron
model that combines an exponential spiking mechanism with
an intrinsic adaptation current that has a sub-threshold and a
spike-triggered component:

Cm
dVi

dt
= −GL (Vi − EL) + GL∆Texp

(
Vi −VT

∆T

)
−wi −

∑
j∈pre

I syn
ij (2)

τw
dwi

dt
= −wi + a (Vi − EL) + τwb

∑
tf∈F (i)

δ (t− tf ) (3)

Neuron i emits a spike at times tf when the membrane
potential Vi diverges towards infinity, capturing the upswing
of the action potential (parameterized by VT and ∆T ). The
corresponding spike train is defined as Si(t) =

∑
tf
δ (t− tf ).

At these times, the membrane potential is reset to a constant
reset potential Vreset for t ∈ (tf , tf + trefr], after which
integration is resumed as above. The parameters a = 4 nS
and b = 80.5 mV determine the relative contribution of sub-
threshold and spike-triggered adaptive processes, respectively.
The time constant of intrinsic adaptation is set to τw = 144ms,
following [8] (see Table II).

TABLE II
NEURON PARAMETERS.

Parameter Value Description
Cm 250.0 pF membrane capacitance
EL −70.0 mV resting membrane potential
Vth −50.0 mV fixed firing threshold
Vreset −60.0 mV reset potential
GL 16.7 nS leak conductance
∆T 2.0 threshold sharpness parameter
a 4.0 nS sub-threshold intrinsic adaptation
b 80.5 mV spike-triggered intrinsic adaptation
tref 2.0 ms absolute refractory time
τw 144.0 ms adaptation time constant

Synaptic transmission is modelled as a conductance-based
process, where each presynaptic spike triggers an instanta-
neous rise of amplitude w syn

ij in the corresponding conduc-
tance, followed by an exponential decay with time constant
τ syn:

τ syn

dg syn
ij (t)

dt
= −g syn

ij (t) + w syn
ij

∑
tf∈F (j)

δ
(
t− tf − d syn

ij

)
(4)

The total synaptic current I syn
ij , generated by inputs from

presynaptic neuron j and mediated by synapse type syn ∈
{E, I}, is thus given by:

I syn
ij (t) = g syn

ij (t) [Vi(t)− E syn] (5)

where EE = 0 mV and EI = −75.0 mV are the reversal
potentials for excitatory and inhibitory synapses and τE =
2 ms, τI = 6 ms are the corresponding time constants. All
remaining synaptic and connectivity parameters are specified
in Table I).

D. Characterizing population activity
In order to quantify and compare the system’s operating

point in various conditions, we employ a set of metrics that,
taken together, provide a statistical characterization of the
macroscopic features of population activity in response to
input. Of particular interest is the degree of regularity and
synchrony at the population level, which we quantify in the
form of a summarized, numerical description of the system’s
operating point and how it varies during stimulus processing.
For this purpose, we use several complementary parameter-
free metrics, grouped by the feature they are meant to quantify.
These provide global measures of regularity and synchrony,
computed as the mean absolute distance between the measured
population results (θ̂) and the values that would be obtained
by N stationary Poisson processes at the same rate, which we
consider as the ‘ground truth’ for the desired asynchronous
irregular state:

Iα =
1

c

c∑
i=1

(θi − θ̂i) (6)

where Iα represents the global index summarizing the results
obtained for metric set α (e.g., synchrony, regularity, etc.),
composed of c different metrics:

2018 International Joint Conference on Neural Networks (IJCNN)



a) Regularity (Ireg): to determine the (ir)regularity of
population activity, we employ a set of metrics consisting
of reg = {CVISI,LVISI}, whose expected values for a pure
Poisson process are θreg = [1, 1].

b) Synchrony (Isync): we consider the set of metrics
sync = {D ISI, DSPIKE,CSPIKE}, whose expected values are
θsync = [0.5, 0.3, 0.25], respectively (see [12] for details about
these metrics and their implementation).

c) E/I Ratio: to quantify the degree of balance between
excitation and inhibition, we record the difference in the
mean amplitude of each neuron’s excitatory and inhibitory
input currents 〈IE − II〉 and the average correlation coef-
ficient between them. The set of metrics is, in this case,
EI = {〈IE− II〉,CC(IE, II)} and the target values correspond
to a purely balanced condition, θEI = [0, 1].

Thus, to obtain a summary statistic of the population state,
we use a compound distance metric that quantifies the amount
of asynchrony and irregularity in population activity (as the
distance between the data vector and that obtained for a
collection of pure Poisson processes), as well as the global
balance of excitation and inhibition.

E. State decoding and readout

The state of the circuit, which we generically refer to as
x(t), consists of any of a number of adequate dynamical
variables that describe the system. As mentioned in section I, it
is common to use a continuous rate estimate obtained by low-
pass filtering the spike trains (henceforth denoted by S(t)),
but this option may introduce biases through the parameters of
the filter kernel. A natural, unbiased alternative is to consider
x(t) = V (t), i.e., to readout directly from the membrane
potentials (Equation 2).

Since input and target output correspond to symbolic labels
and/or binary feature vectors, the continuous state variable
x(t) was downsampled. For each stimulus, a representative
of the population response was gathered in a vector x[n]
that corresponded to the population activity x(t∗) sampled at
stimulus offset t∗. These vectors were then combined into a
state matrix X ∈ RN×T . Unless otherwise stated, the total
number of stimulus samples used was fixed at 10000.

To asses the quality of the input-state mappings for each
experiment, we determined the capacity to linearly combine
the input-driven population responses to approximate the de-
sired output [10]. Since readouts are linear and feedforward,
this is equivalent to:

Ŷ = W outX (7)

where Ŷ ∈ R Ny× T and X ∈ R N× T are the collection of
all outputs and corresponding states over all time steps T,
W out is a N× Ny matrix of output weights from the network
to the readout units, chosen to minimize the quadratic error
between the readout’s output ŷ and the desired target values
y. Finding the optimal W out that minimizes the error (training
the readout) amounts to solving:

W out = Y XT
(
XXT + βI

)−1
(8)

where standard linear regression is a special case (β = 0).
The regularization parameter β penalizes solutions with large
norm, which would correspond to a selective amplification
of specific dimensions of x[n] which increases the risk of
overfitting and large out-of-sample error. The readout norm
‖W out‖ thus also provides a metric to quantify the stability
and generalizability of the solution found on the training data.
Throughout this manuscript, we used ridge regression where β
was chosen by leave-one-out cross-validation on the training
set. For comparison, we also tested the solutions found by
standard linear regression, using the Moore-Penrose pseudo-
inverse method.

The readout was typically trained on a representative set
comprising Ttrain = 0.8T input-output samples in order to
generate testable input-output relations for the remaining data
set Ttest = 0.2T . The accuracy of the solution was quantified
by measuring readout error on the test data as:

E(ŷ, y) =

Ny∑
i=1

(
T∑
n=1

(yi[n]− ŷi[n])2

)
(9)

In addition, given the symbolic nature of the tasks, we also
determined the accuracy in terms of a categorical decision,
using a winner-takes-all function over the Ny readout dimen-
sions.

F. Numerical Simulations and Analyses

All numerical simulations were run using NMSAT1 [6], a
high-level wrapper for NEST customized for the application
of reservoir computing principles to complex microcircuits.
NEST version 2.12.0 [9] was used for all the numerical
simulations. A complete code and data package is available
upon request.

III. RESULTS

Based on previous work, we expected that different stimulus
encoding schemes would lead to substantial differences in
the characteristics of population responses which, in turn,
might influence the circuit’s computational properties [5].
Likewise, post-processing steps commonly used to acquire
population responses (e.g., filtering of spiking activity), might
introduce biases that modulate performance, without reflecting
the processes occurring in the circuit.

Throughout this study, we followed a generic procedure:
generate microcircuit C (subsection II-C), inputs and target
outputs (u[n],y[n]) (subsection II-A); build and connect the
input layers (subsection II-B); set circuit parameters that allow
it to operate in a suitable regime (see below); drive the system
with the input for the entire length T = 10000 (corresponding
to a total simulated time of 2000 s), discarding an added
initial transient phase (Ttransient = 100); gather all internal
state vectors (x[n]) generated by the population in response to
each stimulus; use a subset of the data (Ttrain = 0.8T ) to train
the readouts and a disjoint subset (Ttest = 0.2T ) for testing
(subsection II-E).

1github.com/rcfduarte/nmsat
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Circuit dynamics
The quality of the input-state mappings and the underlying

circuit dynamics may be dependent on the circuit’s specifica-
tions but also on how the input is delivered and on how the
circuit interacts with it. In order to control for these factors and
obtain comparable dynamics in the different encoding regimes,
we independently tuned the input amplitude parameter ρu,
along with the global ratio of inhibition to excitation in
the network γ, for each of the two encoding schemes (see
Figure 2).
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Fig. 2. Noise-driven circuit dynamics for direct (left) and indirect (right) en-
coding. (a, b) - The input amplitude parameter ρu was varied in combination
with the E/I balance parameter g to obtain comparable macroscopic statistics
across the population (low-rate asynchronous irregular activity with globally
balanced excitation and inhibition). (c, d) - Illustrative examples of population
activity (over a period of 500 ms) using the chosen parameter combination
indicated as plus marker in (a, b): spiking activity of 100 randomly chosen
neurons (top), membrane potential of one randomly chosen excitatory neuron
(middle) and total excitatory and inhibitory synaptic currents onto the same
neuron (bottom).

To tune the systems to operate in a low-rate asynchronous
irregular state with balanced excitation and inhibition (sub-
section II-D), we explored the characteristics of population
responses when driven by stationary, unspecific and stochastic
input. For the direct encoding condition, the input in these
experiments corresponded to Gaussian white noise, with mean
1 and standard deviation 0.5, whose amplitude was scaled by
ρu. For the indirect encoding condition, the input in these
experiments consisted of N in independent realizations of a
stationary Poisson process with rate ρu. The target operating
point was achieved for values of ρu = 1.5nA, 14.0 spikes/s
and γ = 15, 11, for the direct and indirect encoding, respec-
tively (see Figure 2a, b).

In line with the activity traces illustrated in Figure 1,
driving the circuit with spiking input leads to a more ‘natural’
response, a sparser and more distributed activity pattern where
the degree of synchrony and, particularly, regularity is signifi-
cantly minimized (Figure 2c and d). Importantly, despite firing

at a lower mean rate, the indirect encoding condition engages a
larger fraction of the population. In addition, the magnitude of
the synaptic currents is smaller in the direct encoding condition
(where synaptic currents are only generated internally, through
the recurrent synapses). Even though it is straightforward
to place the system in the desired operating point in both
encoding schemes (Figure 2a, b), driving the system with
spiking input leads to physiologically more realistic responses,
both at the single neuron and population levels, as it provides
the necessary synaptic drive to increase the circuit’s overall
responsiveness.

Encoding capacity

In all the cases that we explored, representational capacity
was high and the circuit achieved perfect classification ac-
curacy for Nu ≤ 1000. However, if we evaluate the error
between the raw readout output ŷ and the binary target y, the
difference between encoding and decoding schemes becomes
more apparent (Figure 3). Error increased steadily with the
number of input stimuli but appeared to saturate in the indirect
encoding condition (Figure 3b). This suggests that the total
capacity was smaller than in the direct encoding condition
(Figure 3a). This is not surprising given the larger impact
this encoding regime has on the characteristics of population
activity.

(a) (b)

(c) (d)

Direct Indirect

Fig. 3. Error and stability of readouts as a function of the number of
stimuli for direct (left) and indirect (right) encoding. (a, b) Squared error;
(c, d) Readout norm. In both conditions the classification accuracy was 1 for
the range of stimuli considered. The plots depict the results obtained when
decoding was performed either on the membrane potentials (V, black) or the
filtered spike trains (S, gray); additionally, the impact of regularization (see
subsection II-E) in the decoding process is shown by comparing the results
obtained with β = 0 (solid curves, pseudo-inverse method) and β > 0 (dashed
curves, Ridge regularization). Note that the scales differ across graphs.

For both encodings, as discussed in [13], reading out from
membrane potentials is a more natural way to decode the
population activity, leading to smaller classification errors
(Figure 3a, b) and more stable solutions (Figure 3c, d).
Regularization is also shown to benefit the decoding process
in that it substantially reduces the error and the magnitude of
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the norm of the estimated weights. This result highlights the
importance of high-dimensionality and distributed population
activity. Solutions that privilege a distributed readout which
does not amplify a small number of dimensions (due to the
imposed penalty on the norm, see subsection II-E) significantly
reduce the error, particularly when reading out from the filtered
spike trains.

It is worth noting that, in the direct encoding condition, only
the neurons that are directly stimulated depolarize sufficiently
to spike. This feature explains the large error obtained for
small Nu (Figure 3a, c). When the number of stimuli is very
small, so is the total number of stimulated neurons, which
in turn leads to reduced spiking activity in the circuit and
introduces numerical instability.

In summary, a direct encoding scheme leads to more dis-
cernible responses. It improves the circuit’s representational
capacity and enables accurate stimulus classification. When
the input stimuli are encoded indirectly, population responses
are ‘healthier’, but classifying stimulus identity is harder,
leading to larger errors as well as relatively unstable solutions,
especially when no regularization penalty is introduced.

Internal representations

The characteristics of the circuit’s macroscopic state in
response to its input are a key determinant of its computational
performance. They determine how the system exploits its
high-dimensional state space to project distinct input stimuli
onto separable activity clusters. Consequently, they influence
the circuit’s representational and processing capacity. In this
section, we explore how the choice of encoding scheme affects
the system’s effective dimensionality, i.e., the subspace on
which neural activity predominantly lies (see [2]) and how
these effects are reflected on different state variables.

(a) (b)

Fig. 4. Effective dimensionality of the state matrix X as a function of the
number of input stimuli Nu for the direct (a) and indirect (b) encoding
schemes and for conditions where the state matrix is composed of samples
of either the population membrane potentials (V , black) or the filtered spike
trains (S, gray). Dashed line denotes the diagonal.

Effective dimensionality (λeff ) quantifies how explained
variance is distributed among the principal components (PC).
If all PCs capture equal amounts of variance in the data, λeff

will be high. If some PCs explain a large amount of variance
relative to other PCs, λeff will be low. The effective dimen-
sionality in the direct encoding condition grows supralinearly
with the number of stimuli up to a maximum of Nu ≈ 250 and
Nu ≈ 650 stimuli, when the decoded variables are the filtered

Fig. 5. Impact of encoding strategy and state variable on the characteristics
of stimulus representations for direct (left column, (a,c)) and indirect (right
column, (b,d)) encoding schemes. Depicted in each panel is a projection of
stimulus-specific state vectors to the space spanned by the first three principal
components when the state comprises samples of the population membrane
potentials (V , (a,b)), or the filtered spike trains (S, (c,d)). The insets depict
the amount of variance explained by the first 10 principal components.

spike trains S or the membrane potentials V , respectively
(Figure 4a). Using the indirect encoding scheme, the effective
dimensionality no longer depends on the number of unique
input stimuli, given that the number of actual input channels
is constant (N in, see Figure 4b). Nevertheless, both conditions
exhibit a marked decline when the analysis is performed on
the filtered spiking activity, suggesting that this commonly
used post-processing step may incur information loss as it
underestimates the richness of the system’s dynamics.

The complexity of the stimulus representations (and in-
directly, the circuit’s capacity) can also be evaluated when
the stimulus-specific activity vectors are projected onto the
space spanned by the first three principal components. The
direct encoding scheme gives rise to a clearer state separation,
where activity vectors in response to different stimuli lie in
distinct and well-separated clusters (see Figure 5a), and this
facilitates readout classification. Indirect encoding also leads
to unique stimulus-specific representations, but with larger
variance, as illustrated by the spread of the activity vectors
in Figure 5b. This explains the lower capacity (and higher
classification error) observed in this encoding regime and the
smaller sensitivity of effective dimensionality to the number
of input stimuli.

It is also worth noting that in both encoding schemes,
reading out from the filtered spike trains has detrimental effects
as it ‘distorts’ the internal representations and reduces their
uniqueness (Figure 5c, d). This increases the error in that
it makes it harder for the readout to extract the relevant
information even though it is present in the system.

How important is the balanced state?

An important assumption underlying the chosen baseline
conditions (see section III) is that the macroscopic state of
the circuit determines its computational performance. Even
though physiological and computational evidence points to
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the relevance of a balanced, asynchronous irregular state (AI
state) for active processing, an explicit quantification of how
functionally relevant these properties are is still lacking (but
see, e.g. [5]).

Driving the circuit with unspecific and stochastic input (used
to tune the population state, see subsection II-D) differs from
the stimulus-driven condition, where specific random subsets
of neurons were stimulated. Even though the AI state is
retained in both cases, due to the maintenance of the chosen
stimulus amplitudes, stimulus onset causes a noticeable mod-
ulation of the circuit’s macroscopic statistics (Figure 6). For
both encoding schemes, stimulus responses are characterized
by a marked desynchronization, whereby the overall synchrony
(Isync) is substantially reduced. This effect is more noticeable
in the indirect encoding condition. The responses also become
more regular with a slight deviation away from the Poisson
statistics.
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Fig. 6. Stimulus-evoked modulation of population state in comparison with
the input noise condition for direct (a) and indirect (b) encoding schemes.
For each condition the figure displays the distributions of regularity (Ireg)
and synchrony (Isync) indices in noisy vs evoked conditions. Note that these
indices reflect the difference to a pure Poisson process, so smaller values
indicate activity closer to the AI state.

Apart from these differences observed in the stimulus-
vs noise-driven scenarios, a more relevant question is how
these values affect computational capacity, i.e., how important
is the balanced state? We thus proceeded to measure the
classification error in the different encoding schemes, while
varying the circuit state by systematically manipulating ρu
and γ. For each parameter combination, we assess the degree
of population-wide synchrony (Isync) and regularity (Ireg) as
well as the overall balance of excitation and inhibition (IEI)
relative to the circuit’s classification performance in the direct
and indirect encoding schemes (Figure 7).

The results show a non-trivial relation between the observed
population state and the average classification error. Overall,
the single-most important feature appears to be EI balance
in that, regardless of the encoding condition, the error is
minimized when the average difference between E and I
currents is closest to 0, i.e., when the circuits are closest to a
globally balanced regime.

(a)

(b)

Fig. 7. How the population state and global EI balance affect the circuit’s
performance in the stimulus classification task with Nu = 50 under the direct
(a) and indirect (b) encoding conditions. Mean absolute error (MAE) of the
readout output (ŷ) is displayed as a function of: difference of mean inhibitory
and excitatory current amplitudes (for 1000 randomly sampled excitatory
neurons, see subsection II-D), recorded during the test phase (left); and the
summary indices for synchrony Isync (middle) and regularity Ireg (right).
Note that, due to computational constraints, (b) contains fewer data points
than (a).

Population-wide synchrony appears to affect performance
in a more complex manner, whereby the minimum error is
obtained at an intermediate level of synchronization, with
Isync ≈ 0.25. In any case, both conditions demonstrate that
complete asynchrony (Isync = 0) does not lead to lower error.
The functional impact of irregularity likewise appears to be
dependent on the encoding scheme, and minimal error is also
achieved at an intermediate value of Ireg ≈ 0.3. More regular
responses tend to lead to higher error, but a smaller Ireg does
not correspond to the lowest error.

DISCUSSION

Using the reservoir computing (RC) approach as a reference
conceptual frame, we can analyse the dynamics of informa-
tion processing in biologically inspired architectures, where
multiple features of the system’s structural and functional
components can be directly constrained by empirical data from
multiple scientific domains. Using cognitively plausible com-
putational tasks implemented in neurobiologically plausible
systems, we can test relevant functional hypotheses.

However, as demonstrated throughout this study, the quality
of the input-state mappings required to solve a particular task
and the specificity with which the system is driven by the
external input is not only determined by the specifications of
the circuit considered, but also by how the input is delivered to
it, how it encodes the relevant information and how population
activity is decoded from it. These choices introduce non-
negligible biases, which may limit the generalizability of
results. Ideally, we ought to converge onto solutions that
minimize or completely remove such biases, by applying strict
neurobiological constraints.
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Choosing an adequate encoding strategy depends on the
nature of the computational problem one seeks to address
but has been shown to drive the circuits in a very specific
manner (Figures 2, 6), leading to specific macroscopic activity
patterns and thus strongly imposing particular interpretations
of the underlying processes that may not match relevant
physiological observations. For example, it is common to
drive the circuit with direct somatic current representing the
input variables to be encoded (what we have termed direct
encoding). However, as mentioned in section I, biological
microcircuits communicate via complex spatio-temporal spike
patterns and thus, any external input to be encoded and
processed must be contained in complex spatio-temporal spike
sequences. Failure to do so, leads to unrealistic population
dynamics that is inconsistent with physiological observations.

Our results demonstrate that spiking input naturally leads
to physiologically more realistic responses (Figure 2), where
the majority of neurons operates close to their firing threshold
and population activity is sparser and more evenly distributed,
consistent with cortical activity during active processing states.
The indirect encoding scheme thus provides the necessary
synaptic drive that is missing in the direct encoding condition.
In that case, smaller sets of neurons are sufficiently depolarized
to ever reach the threshold and the only synaptic drive comes
from internal, recurrent connections.

Unsurprisingly, and despite leading to population responses
that are not as physiologically realistic, the direct encoding
scheme is computationally beneficial (Figure 3), leading to
more accurate classification and higher representational capac-
ity. Different stimuli map onto compact and clearly separable
clusters (Figure 5) and the dimensionality of the sub-space
where population activity generally lies is more constrained
and stimulus-dependent (Figure 4). The system’s responses are
enslaved by the input, facilitating the readout classification. On
the other hand, the larger variability and higher-dimensional
responses observed in the indirect encoding condition are
likely to play an important functional role for more complex
computations, but restrict the circuit’s representational capac-
ity.

An equally important issue that needs to be addressed
when attempting to probe the characteristics of functional
neurodynamics and the impact of different circuit features
on computational performance, lies in the specification of the
relevant state variables and how information is readout (the
decoding problem). Ideally, the system’s dynamics should be
assessed with a direct, unbiased internal variable, but this
is typically not the case in the context of SNNs. Instead,
the most common approach is to extract information from
the circuits using a continuous rate variable, obtained by
convolving the population’s spike trains with an exponential
kernel. As discussed in [13] and further validated in this study,
this procedure may incur information loss (Figure 3), by under-
representing the richness of the system’s dynamics (Figure 4).

Overall, the results presented in this study provide some
preliminary constraints for studies applying RC principles
to biologically inspired spiking neural network models of

cognitive function and highlight the importance of constraining
the properties of these systems and the experimental design
by relevant biophysical considerations. Failure to account for
many of these constraints may introduce significant biases that
limit the generalizability of any conclusions drawn, in that
the systems’ behavior and computational performance may
come to reflect these biases and not necessarily the circuit’s
properties.
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[10] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing ap-

proaches to recurrent neural network training. Computer Science Review,
3(3):127–149, 2009.

[11] Raoul-Martin Memmesheimer and Marc Timme. Designing the
dynamics of spiking neural networks. Physical Review Letters,
97(18):1881011–4, 2006.

[12] Mario Mulansky, Nebojsa Bozanic, Andreea Sburlea, and Thomas
Kreuz. A guide to time-resolved and parameter-free measures of spike
train synchrony. Proceedings of the 1st International Conference on
Event-Based Control, Communication and Signal Processing, EBCCSP
2015, (1):1–8, 2015.

[13] Dick van den Broek, Marvin Uhlmann, Hartmut Fitz, Renato Duarte,
Peter Hagoort, and Karl Magnus Petersson. The best spike filter
kernel is a neuron, 2017. Extended abstract, Cognitive Computational
Neuroscience conference (CCN 2017), New York.

2018 International Joint Conference on Neural Networks (IJCNN)


		2018-09-25T12:43:04-0400
	Certified PDF 2 Signature




